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Since 1986, we have been studying a cohort of individuals from a region in China with epidemic rates of gastric cardia cancer and have
conducted numerous two-stage studies to assess the association of various exposures with this cancer. Two-stage studies are a commonly
used statistical design. Stage one involves observing the outcomes and accessible baseline covariate information on all cohort members,
and stage two involves using the stage one observations to select a subset of the cohort for measurements of exposures that are difficult to
obtain. When the outcomes are censored failure times, such as in our studies, the most common designs used are the case-cohort and nested
case-control designs. One limitation of both these designs is that the estimators of the cumulative hazards, and hence survivals and absolute
risks, are biased when some cases are missing the stage two measurements. In our experience, such missingness is present in virtually all
two-stage studies that (like ours) use biological specimens to obtain exposure measurements. In earlier work we derived and characterized
the efficiency of a class of nonparametric and a class of semiparametric cumulative hazard estimators that are unbiased regardless of whether
or not all cases are measured. In this article we limit the presentation of the mathematical derivation of these two classes to aspects important
to study design and analysis. We analyze data from a two-stage study that we conducted on the association of Helicobacter pylori infection
with incident gastric cardia cancers. We discuss the substantive reasons why we deliberately sampled only 25% of the available cancer
cases. Through simulations, we demonstrate that substantial variation in precision exists between unbiased estimators within each class, and
express the origin of these differences in terms of parameters familiar to investigators. We describe how preexistent knowledge about these
parameters can be used to increase estimator precision, and detail specific strategies for constructing such estimators. Computer code in R
that implements these estimators is available from the authors on request.
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1. INTRODUCTION

Nearly all large epidemiologic cohort studies initiated in the
last 30 years have been designed to estimate the association
of a disease with measurements made on biological samples
(Samet and Munoz 1998). These measurements, which we de-
note by Vi and refer to as exposures, are typically expensive
and consume scarce resources. For example, in the data analy-
sis that we present in Section 6, Vi = 1 if an individual has
serologic evidence of Helicobacter pylori (Hp) infection and
Vi = 0 otherwise. In an attempt to reduce the number of Vi

measurements while minimizing the decrease in the precision
of the estimates, numerous sampling designs, called “two-stage
studies” by statisticians (Robins, Rotnitzky, and Zhao 1994;
hereinafter RRZ), and “nested cohort studies” by epidemiolo-
gists (Samet and Munoz 1998), have been proposed. Although
the proposals vary with type of data and parameters of inter-
est (see RRZ), the general structure is as follows. At the start of
the cohort (time 0), investigators obtain biological specimens as
well as measurements on a large number of covariates, Ai. Typ-
ically, the Ai is information obtained from such measurement
instruments as questionnaires, physical exams, and laboratory
tests. Endpoints of interest are recorded up until some time, τ .
This constitutes the stage-one data, which we denote by Wi.
In stage two, the stage-one data are used to select a subset
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of individuals on whom Vi will be measured. Understandably,
all two-stage designs call for sampling a smaller fraction of
controls (i.e., individuals without the observed endpoint) than
cases. In fact, it is generally specified that two-stage designs
select for Vi measurement “all the cases of interest, but only a
subsample of the noncases” (Samet and Munoz 1998, p. 8).

In this article we focus on two-stage studies where the end-
point of interest is censored failure time and the parameters of
interest are survival probabilities. The nomenclature for these
endpoints, which for concreteness we annotate in terms of our
Hp study (Sec. 6), is as follows. Ti is the time to the event of in-
terest, in this case time to the development of gastric cardia can-
cer (GCC). Instead of Ti, we observed the right-censored event
outcome (Xi,�i), where Xi = min(Ti,Ci), Ci is an independent
censoring time, �i = I(Xi = Ti), and I(·) is the indicator func-
tion. As in most large cohorts, the censoring in the Hp study
was almost entirely due to the end of follow-up, which in this
study was at time, τ = 5.25 years. We refer to individuals with
�i = 1 as cases and those with �i = 0 as controls.

A number of two-stage designs have been proposed for esti-
mation with censored failure time endpoints (for a comprehen-
sive review, see Mark and Katki 2001). Nearly all are variations
of the original nested-case control (NCC) (Borgan, Goldstein,
and Langholz 1995) and case-cohort (CCH) proposals (Prentice
1986; Self and Prentice 1988). The NCC and CCH designs are
also by far the most common designs used in practice (Samet
and Munoz 1998). The main distinction between the NCC and
CCH designs is the control sampling schemes; we briefly re-
view these in Appendix B.
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Both the NCC and CCH designs specify that the risk of fail-
ure is related to covariates through a semiparametric Cox pro-
portional hazards model (CPH) such as (1),

λ(u|Zi) = λo(u) exp(βT
o1Vi + βT

o2Ji). (1)

Here Zi = {Vi, Ji} is a p-dimensional vector of exposure covari-
ates, Vi, and adjusting covariates, Ji. The adjusting covariates
are a subset of all of the baseline covariate information col-
lected at time 0 (Ji ⊆ Ai). These are typically covariates, such
as age and sex, that investigators want to control for to obtain
unconfounded estimates of the association of Vi with Ti. Al-
though the emphasis of both the NCC and CCH designs has
been on estimating the parameters βo = {βT

o1, β
T
o2}, these de-

signs do provide estimators of the cumulative hazards, �(t; z),

�(t; z) =
∫ t

0
λ(u|z)du, 0 ≤ t ≤ τ ; z ∈Z, (2)

where Z is the support of Zi. Just as estimates of the hazard
ratios, which we refer to using the more generic term relative
risks [rr(z)], are obtained from the identity rr(z) = exp(βT

o z),
estimates of survival are obtained from the identity

S(t|z) = exp{−�(t; z)}. (3)

An important limitation of the NCC and CCH cumulative haz-
ard estimators is that unlike the estimators of βo, they are
biased if any cases are missing Vi measurements (Mark and
Katki 2001; Mark 2003). Mark (2003) derived and character-
ized the efficiencies of a class of nonparametric and a class of
semiparametric cumulative hazard estimators that are unbiased
regardless of whether all of the cases are measured. In our two-
stage studies there have always been cases that by either chance
(see Sec. 6.1) or design (see Sec. 6.2), were missing Vi mea-
surements. Indeed, because of events outside the investigators’
control (i.e., missing by chance), we suspect that it would be
rare for any large cohort study using biological specimens to be
able to measure Vi on all cases.

Thus, to obtain unbiased estimates of the effect of Vi on sur-
vival in our two-stage studies, we used nonparametric and semi-
parametric estimators in the classes described by Mark (2003).
The primary goals of this article are to describe these classes
of unbiased estimators, provide a derivation that displays the
determinates of the efficiency of a particular estimator within
a class, demonstrate the application of a semiparametric esti-
mator to the data from the Hp study, and, through simulations,
both illustrate the wide variation in efficiency that can exist be-
tween two unbiased estimators and describe specific strategies
to improve the efficiency of an estimator.

The article is organized as follows. In Section 2 we formally
state the goals of our inference and the structure of the two-
stage studies that we consider. In Section 3 we define the term
full-data estimators, then, applying the general results of RRZ
on obtaining two-stage estimators from full-data estimators, we
derive a class of unbiased semiparametric and nonparametric
cumulative hazard estimators. For the former, we assume that
hazards are specified by a CPH model (1); for the latter, we
make no assumptions about hazards at different levels of covari-
ates. In Section 4 we define a general method for implementing
our estimators, which we call π̂ -estimation, and describe how
the efficiency of one π̂ -estimator relates to another. In Section 5

we apply the theorems of RRZ to censored time-to-event data
and derive the mathematical form of the most efficient estima-
tor within each class. We reexpress the efficient form in terms
of quantities already familiar to researchers involved in obser-
vational studies, and show the general implications for study
design and analysis. In Section 6 we review features of several
of our two-stage studies, and use a π̂ -estimating procedure to
estimate the effect of Hp infection on absolute risks and risk
differences. In Section 7 we apply the general formulation of
what constitutes efficient estimators presented in Section 5, and
propose specific estimators. Simulations demonstrate that the
relative efficiencies of these estimators correspond to predic-
tions from theory. Finally, in Section 8 we provide a simple,
nontechnical summary of the results and their practical conse-
quences. Annotated code in R (Ihaka and Gentleman 1996) that
implements the π̂ -estimating procedures is available from the
authors.

In this article we restrict the mathematical results presented
by Mark (2003) to that subset necessary for understanding the
practical implications of those results. In addition, to make the
presentation more accessible, in the body of the article we ex-
press results only in terms of those functionals of the random
variables required to understand the proofs and their importance
to applications. Actually defining these functionals requires
counting process and martingale notation. With the exception
of two expressions in Section 3.1 (which are not essential for
any subsequent results), this notation is confined to the Appen-
dixes. At points in the article where some readers may desire
more details or clarifications, we explicitly reference the appro-
priate sections of the article by Mark (2003), where the deriva-
tion and discussion of these and other results are presented in a
more general, more detailed, and more technical context.

2. FORMAL STATEMENT OF INFERENCE, DATA
STRUCTURE, AND SAMPLING PROCESS

2.1 Standardized Survival, Standardized Risk
Difference, Full Data, and Auxiliary Covariates

Our main goal of inference is to estimate conditional sur-
vivals (3), standardized survivals, Ss(t|v†), and standardized
risk differences. In accord with usual epidemiologic parlance,
we define Ss(t|v†) to be the weighted sum over j of the S(t|z),
z ∈ Z ,

Ss(t|v†) =
∑

j

S(t|v†, j∗)w( j∗), 0 ≤ t ≤ τ. (4)

Here v† and j∗ represent specific points in the support of
Vi and Ji, and the weights, w( j∗), are functions of j∗ chosen
by the investigator that sum to 1. In the analysis of the Hp data,
the only adjusting covariate, Ji, is age, and we define w( j∗) to
be the observed marginal distribution of Ji in the cohort. For
a given set of weights, the standardized risk differences are a
simple contrast,

Rd(t) = Ss(t|v0) − Ss(t|v1), (5)

where, for instance, we use v0 to represent Vi = 0. Because we
wish primarily to make inference about survivals in groups of
individuals, we assume that the support Z is finite with k∗ lev-
els. Although cumulative hazards and survivals can be esti-
mated at any time t (App. A), for simplicity we always express
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these quantities in terms of the end of the study, and for the
remainder of the article we set t = τ .

Were resource limitation not a factor, then we could mea-
sure Vi on everyone and obtain “full data,” Hi = {Wi,Vi}, where
Wi = {Xi,�i,Ai}. We assume that the covariates in Ai are mea-
sured at time 0; Ai generally contains orders of magnitude more
measurements than the set of adjusting covariates, Ji. Although
while designing a cohort study it is essential to consider which
adjusting covariates will be required, typically Ji is not formally
specified until the analysis stage. Then Ji is usually chosen to be
the subset of covariates in Ai that are known, or suspected, of
being associated with Ti and/or Vi and are not “on the causal
pathway.” We refer to the (possibly empty) set of covariates
that are in Ai but not Ji, as auxiliary covariates, �aux

i . Thus
Ai = {Ji,�

aux
i }. The term auxiliary indicates that we do not

wish to make inference about the cumulative hazards �(t; z),
conditional on �aux

i . In a sense made precise in Section 5 and
in the simulations, the �aux

i can substantially increase the effi-
ciency of estimation when they are correlated with Vi.

2.2 Stage-Two Sampling Restrictions

We define Ri = 1 if Vi is known for individual i, and Ri = 0
otherwise. For most of the article, we assume that conditional
on Wi, selection of individuals for measurement of Vi is inde-
pendent with known, nonzero probabilities, πo(Wi), that do not
depend on Vi, that is,

πo(Wi) = Pr(Ri = 1|Wi,Vi) = Pr(Ri = 1|Wi). (6)

In the usual parlance of missing data, restriction (6) is consis-
tent with Vi being missing at random (MAR) (Rubin 1976). As
we frequently do, we drop the argument of a function and use
the subscript i to indicate that the argument is a random vari-
able. Thus we write πi,o, where πi,o ≡ πo(Wi). At the end of
Section 4 we extend the results to dependent sampling and to
missingness that is not entirely under investigator control.

Without loss of generality, we specify the known sampling
probabilities by

logitπo(Wi) = ψT
o h(Wi). (7)

Here ψo and h(Wi) are known, conformable, finite-dimensional
vectors of parameters and random variables. It is important
to note that the function h(·) is not uniquely determined by
the πo(Wi): that is, neither the parameterization nor the dimen-
sion of (7) is unique. For instance, if Ai contains only infor-
mation on sex, and stage-two sampling depends only on case
status, then two correctly specified models for (7) are

logitπo(Wi) = ψo1I(�i = 1) + ψo2I(�i = 0) (8)

and

logitπo(Wi) = ψo1I(�i = 1) + ψo2I(�i = 0)

+ ψo3I(male) + ψo4I( female). (9)

Here ψo1 = logit Pr(Ri = 1|�i = 1), ψo2 = logit Pr(Ri = 1|
�i = 0), and ψo3 = ψo4 = 0.

The usefulness of models such as (9) will become evident
when we discuss π̂ -estimation in Section 4.

We define WR
i to be the smallest set of linearly independent

vectors such that (7) is true, where size refers to the dimension

of the column space spanned by h(Wi) [span h(Wi)]. In our ear-
lier example, the dimension of WR

i is two. Letting Wl
i ≡ h(Wi)

for some h(·), correctly specified models are those such that

span(Wl
i ) ⊇ span(WR

i ). (10)

We consider models with equivalent spans to be identical, and
restrict ourselves to covariate spaces where the Wl

i are linearly
independent. We denote the scores from any logistic model with
covariates Wl

i as Sl
i,

Sl
i = (Ri − πi,o)W

l
i . (11)

3. ESTIMATORS AND INFLUENCE FUNCTIONS

3.1 Full-Data Estimators and Full-Data
Influence Functions

Although our inferential focus is survival, cumulative haz-
ards are the compensators of the counting process, and thus
the “natural” scale for estimation. (For this and other details
on counting process martingales, see Andersen, Borgan, Gill,
and Keiding 1993.)

In full-data studies, the Nelson–Aalen estimator, �̂(τ ; z), is
the efficient nonparametric estimator of (2) (Andersen et al.
1993). The maximum partial likelihood estimator, β̂ , and the
Breslow estimator, �̂o(τ, β̂), are the semiparametric efficient
estimators of βo and the baseline cumulative hazard (12)
(Andersen et al. 1993),

�o(τ ) =
∫ τ

0
λo(u)du. (12)

For the semiparametric model, the cumulative hazard at any co-
variate level z is �(τ ;βoz) ≡ �o(τ ) exp(βT

o z). It is estimated
by replacing the unknown parameters, βo and �o(τ ), with their
estimates. To indicate the k∗ × 1 vector of cumulative hazards,
we drop z from the arguments and write �(τ), or �(τ ;βo).
Because we are assuming that the time of interest is τ , we fre-
quently drop the time argument.

Let α̂1 denote the Nelson–Aalen estimator, and let α̂2 denote
the partial likelihood estimator of β̂ . Then α̂b, b ∈ {1,2}, are
both solutions to estimating equations of the form

n∑
i=1

Ub
i

(
Hi,R(Xi);αb) = 0. (13)

Each term in (13) depends not only on the subjects data, Hi, but
also on R(Xi). R(Xi) represents the set of individuals at risk
at time Xi: R(Xi) = {i : Xj ≥ Xi}. For instance, using standard
counting process notation (see Sec. A.1), when b = 2, αb = β;
U2

i (Hi,R(Xi);α2) = ∫ τ

0 {Zi − S1(u, β)S0(u, β)−1}dNi(u), and
the maximum partial likelihood estimator, β̂ , is the β that
solves

∑n
i=1

∫ τ

0 {Zi − S1(u, β)S0(u, β)−1}dNi(u) = 0.
For the Breslow estimator, we first estimate β̂ . Then, with α̂3

denoting �̂o(τ, β̂), we can write the estimating equations simi-
larly as

n∑
i=1

U3
i

(
Hi,R(Xi); β̂;α3) = 0. (14)

[See sec. 2 of Mark 2003 for the explicit forms for b = 1 and
b = 3 (14).]
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Although the Ui(·) are not iid, the estimators are asymptot-
ically equivalent to a sum of mean 0, independent influence
functions (Andersen et al. 1993), that is,

n1/2(̂αb − αb
o) = n−1/2

n∑
i=1

DFb
i (Hi;αb

o) + op(1), (15)

where αb
o is the underlying parameter being estimated. We refer

to these DFb
i , b ∈ {1,2,3}, as the full-data influence functions of

�̂(τ ), β̂ , and �̂o(τ, β̂). The explicit definitions of the DFb
i are

given in Section A.2. For instance, for b = 2, Section A.2 gives
DF2

i = i−1
∫ τ

0 {Zi − e(u, βo)}dMi(u), and (15) becomes

n1/2(β̂ −βo) = n−1/2
n∑

i=1

i−1
∫ τ

0
{Zi −e(u, βo)}dMi(u)+op(1).

3.2 Estimators and Influence Functions for
Two-Stage Designs

For two-stage designs, direct application of the theorems in
RRZ establish that the solutions to estimating equations

n∑
i=1

π−1
i,o RiU

b
i

(
Hi,R(Xi);αb) − π−1

i,o (Ri − πi,o)gb(Wi) = 0,

b ∈ {1,2}, (16)

produce consistent, asymptotically normal nonparametric, and
semiparametric estimators of the cumulative hazards (2) and βo,
respectively. Here the gb’s are any conformable vectors of non-
stochastic functions of Wi specified by the investigator. We de-
note estimators based on the functions gb as �̃(g1); β̃(g2).

Similarly, Mark (2003, sec. 4) showed that solutions to

n∑
i=1

π−1
i,o RiU

3
i

(
Hi,R(Xi); β̃(g2);α3)

− π−1
i,o (Ri − πi,o)g

∗
3(Wi) = 0 (17)

define a class of consistent, asymptotically normal two-stage
semiparametric estimators of (12). We denote those estimators
by �̃o(τ, β̃(g2), g∗

3) or �̃o(τ, β̃,g3). Here g∗
3 is any scalar func-

tion of Wi, and g3(Wi) is the function of g2 and g∗
3 defined

in (A.4.1). The explicit estimating equations for (16) and (17)
are given in (A.3.1)–(A.3.3).

We write the influence functions that correspond to these
classes of two-stage estimators as

Db
i (gb) = π−1

i,o RiD
Fb
i − π−1

i,o (Ri − πi,o)gb(Wi),

b ∈ {1,2,3}. (18)

For b ∈ {1,2}, (18) follows directly from RRZ. For b = 3,
(18) is obtained by a Taylor series expansion around βo (A.4).
Using notation analogous to the full-data case (15), we express
the two-stage estimators as a sum of their influence functions,

n1/2(α̃b(gb) − αb
o

) = n−1/2
n∑

i=1

Db
i (gb) + op(1). (19)

From (19), it is clear that the asymptotic variances of the α̃b(gb)

are E[Db
i (gb)Db

i (gb)
T ].

Let �̃(τ, z, ·) be any nonparametric [e.g., �̃(g1; z)] or semi-
parametric [e.g., �̃o(τ, β̃,g3) × exp(β̃T(g2)z)] two-stage esti-
mator of (2). Then survival estimates, S̃(τ |z), are formed by
replacing �(τ ; z) in (3) with �̃(τ, z, ·). Asymptotic distrib-
utions are derived by applying the functional delta method
exactly as was done by Andersen et al. (1993) for the full
data survival estimators. We provide consistent estimators of
the variances of two-stage estimators of (3)–(5) in Appendix A
and in Mark (2003, app. A.4).

4. THE SIMPLE TRUE-π AND π̂ -ESTIMATORS

We define simple true-π (STP) estimators to be estimators
where gb ≡ 0 [e.g., gi(Wi) = 0 for all i]; that is, they are
the usual inverse–probability-weighted Horvitz–Thompson es-
timators. However, rather than using the notation in (18) and
denoting the influence function of these STP estimators as
Db

i (gb ≡ 0), we write Db
i (πo), which, by (18), is

Db
i (πo) = π−1

i,o RiD
Fb
i . (20)

We define π̂ -estimating procedures to be procedures in which
we continue to set gb ≡ 0, but replace the known πi,o in estimat-
ing equations (16) and (17) with an estimate, π̂ (Wl

i ), of πi,o.
The predicted sampling probabilities, π̂(Wl

i ), are obtained by
replacing ψo with its maximum likelihood estimate, ψ̂ , in a cor-
rectly specified model (7) with covariates h(Wi) = Wl

i . We re-
fer to estimators from such procedures as π̂ -estimators. RRZ
(prop. 6.2) showed that π̂ -estimators are consistent and asymp-
totically normal and have an influence function, Db

i (π̂(Wl)),
that is the residual of a population least squares regression
of (20) on the scores from the prediction model (11). That is,

Db
i (π̂(Wl)) = Db

i (πo) − PblSl
i. (21)

Here PblSl
i is the projection operator,

Pbl = E[Db
i (πo)S

lT
i ]E[Sl

iS
lT
i ]−1. (22)

Because Db
i (π̂(Wl)) is a residual, the variance of the π̂ (Wl)-

estimator is less than or equal to the variance of the STP estima-
tor for all Wl

i . In addition, because residuals are nonincreasing
in the dimension of the column space, if span(Wm

i ) ⊃ span(Wl
i ),

then the variance of the π̂(Wm)-estimator is less than or equal to
the variance of the π̂ (Wl)-estimator. [For a more in-depth dis-
cussion of the properties of π̂ -estimating procedures, and proof
that the π̂ -estimating procedures and the solutions to estimating
equations (16) and (17) generate the identical class of estima-
tors, see Mark 2003, secs. 5 and 6 and app. C.]

π̂ -estimation is the “natural” estimating procedure when
we relax the requirements that sampling be independent with
known probabilities. In general, the dependent sampling that we
consider is characterized as follows: Partition the observed Wi

into a finite number of strata, and select a fixed number of cases
and controls from each stratum. If we let Wf

i be the saturated
column space of indicator variables generated by that parti-
tion, then we can use any π̂ -estimator with span(Wl

i ) ⊇ span Wf
i

(RRZ, lemma 6.2). Such dependent sampling is common; for
example, in the Hp study, we sampled a fixed number of cases
and controls. NCC risk set sampling is by definition dependent.
We review the definition of NCC sampling and provide appro-
priate π̂ -estimators in Appendix B.
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So far, we have assumed that πi,o, or equivalently, the ψo
in logistic models (7), are known. If rather than knowing ψo,
we only know there is a ψ∗ such that logitπi,o = ψ∗Wl

i ,
then the estimator π̂ (Wl) also has influence function given
by (21) (RRZ, prop. 6.2). For instance, to obtain consistent
π̂ -estimators for our Linxian studies, we had to assume that
we could correctly specify a logistic model that accounted for
the chance missingness. Given the nature of the events caus-
ing the missingness (see Sec. 6), we believed that missingness
was related to neither Wi or Vi, and hence any π̂ -estimator with
span(Wl

i ) ⊇ span(WR
i ) would be consistent.

Computer code for implementing the general class of
π̂ -estimating procedures in R is available from the authors.
This program handles a completely general data structure and
gives estimates, and the variances, for conditional survivals (3),
standardized survivals (4), risk differences (5), and population-
attributable risks. (For population-attributable risk estimators
and their asymptotic distributions, see Mark 2003, app. A.4.)
We have used this program to produce nonparametric survival
curves for an article analyzing the association of zinc levels in
biopsy tissue with esophageal cancer (Abnet et al. 2005), and to
produce semiparametric survival curves and risk estimates for
the nutrient analyses described in Section 6.

5. EFFICIENCY, IDENTIFIABILITY, AND
LOCAL EFFICIENCY

5.1 Efficiency and the Optimal gb

Referring to π−1
i,o Ri as the weight and π−1

i,o (Ri − πi,o)gb(Wi)

as the offset, it is clear from estimating equations (16) and (17)
and influence functions (18) that the class of two-stage estima-
tors that we consider comprises weighted versions with offset
of the efficient full-data estimators. Because specific estima-
tors differ only with regard to the specification of the gb, ef-
ficiency differences are determined entirely by the choice of
the gb function. We use geff

b to denote the optimal gb, that is,
the gb that minimizes E[Db

i (gb)Db
i (gb)

T ]. By results of RRZ
(1994) and Newey (1990), who showed that all regular non-
parametric full-data estimators are asymptotically equivalent,
the class of nonparametric estimators, �̃(g1), defined by (16)
and (A3.1), contains (in the sense of asymptotic equivalence)
all possible nonparametric cumulative hazard estimators for
two-stage designs. Hence the estimator �̃(geff

1 ) achieves the
nonparametric efficiency bound (Mark 2003). In contrast, for
semiparametric estimators, we have followed a “practical rec-
ommendation” of RRZ (p. 850) and restricted consideration to
the subclass of all possible two-stage semiparametric estima-
tors that use the “full-data efficient h( ) function” (Mark 2003).
[See RRZ for the general definition of the h(·) functions, and
its specific form in two-stage estimators of the β0 in (1).] Thus
we call estimators using the gb that minimizes the variance of
D2

i and D3
i the restricted-class–efficient (RC-efficient) estima-

tors (Mark 2003).
For b ∈ {1,2}, direct application of proposition 2.3 of RRZ

establishes that geff
i,b = E[DFb

i |Wi]. By applying the same re-
sult to semiparametric estimators (17) of (12), we find that
for any given g2 function, the variance is minimized by
g∗

i,3 = E[DF3
i |Wi]. It is simple then to show that the variance

of �̃o(τ, β̃(g2),E[DF3|W]) is minimized with g2 ≡ 0 (Mark
2003, app. B). By definition of g3 (A.4.1), geff

i,3 = E[DF3
i |Wi].

Replacing gb(Wi) with [DFb
i |Wi] in (18) demonstrates that

these efficiency results correspond to intuition. Every subject
contributes E[DFb

i |Wi] to estimation; subjects with measured Vi
provide the additional information in their observed “weighted
residual,” π−1

i,o (DFb
i − E[DFb

i |Wi]).
One can see that by choosing gb(Wi) = πi,oPblWl

i , the influ-
ence function given by (18) is identical to the influence function
of the π̂ -estimator, π̂ (Wl

i ) (21). Conversely, for any gb(Wi) one
can specify a logistic model (7) so that the influence function
of the π̂ -estimator is identical to (18) (RRZ; Mark 2003). In
particular, π̂ -estimators based on predicted probabilities from
logistic model (23),

logitπo(Wi) = ψT
1 h(Wi) + ψT

2 Weff
i , Weff

i = π−1
i,o geff

i,b,

(23)

are efficient or RC-efficient (Mark 2003, app. C).

5.2 Identification of geff
b and Implications for Study

Design and Analysis

The optimal gi,b, E[DFb
i |Wi], are functions of unknown pa-

rameters. RRZ’s proposition 2.4 established that geff
i,b can be

replaced by a consistent estimate, ĝeff
i,b, without changing the

asymptotic distributions of the two-stage estimators. That is, an
estimator using ĝeff

i,b achieves the efficiency (or RC-efficiency)
bound. If geff

i,b can be consistently estimated, then we say that
the efficient estimator is identified. If not, then the variance of
the efficient influence function represents an unknown lower
bound that no estimator is guaranteed to achieve.

If the support of Wi were discrete, geff
i,b could be consistently

estimated by the empirical average of the DFb
i among individ-

uals with Ri = 1 within each level of Wi. Thus a π̂ -estimator
saturated in the discrete Wi obtains that efficiency bound. In
time-to-event data, Wi has the continuous component, Xi. Un-
less Xi is a deterministic function of (�i,Ai), there is no dis-
crete subset Wl

i ⊂ Wi such that E[DFb
i |Wl

i ] = E[DFb
i |Wi] (Mark

2003). In the rest of this section we approach the task of con-
ditioning on Xi and increasing efficiency. We do this by reex-
pressing geff

i,b in terms of relative risks, survivals, and covariate
distributions. We discuss conditions under which each of these
can be consistently estimated, and examine the implications for
study design and analysis.

We reexpress geff
i,b (Mark 2003, sec. 8.1) as

geff
i,b = EE[DFb

i |Wi,Vi] =
∫
V

DFb
i (Wi, v)Pr(v|Wi)dv. (24)

In the design stage, a crucial consideration is what, if any,
auxiliary variables should be measured. From (24), it is clear
that for �aux

i to be optimal, it is sufficient that for any larger
set, �aux+

i > �aux
i ,

Pr(v|Xi,�i, Ji,�
aux
i ) = Pr(v|Xi,�i, Ji,�

aux+
i ); (25)

that is, we should collect all auxiliary information that provides
additional knowledge about the distribution of the incompletely
measured covariates Vi at any time on study. Letting v1 be
some reference level of interest in V , we can parameterize the
Pr(v|Wi) in (24) in terms of the exposure odds,

Ki,v = Pr(Vi = v|Wi)

Pr(Vi = v1|Wi)
. (26)
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Using Bayes’s rule, Pr(v|Wi) = Pr(Xi,�i|v,Ai)Pr(v|Ai)/Pr(Xi,

�i|Ai), and a noninformative censoring assumption, Pr(Ci ≥
s|Ti ≥ s,Vi,Ai) = Pr(Ci ≥ s|Ti ≥ s,Ai), (26) becomes (Mark
2003, app. D)

Ki,v = rr(Xi|v,Ai)
�i

S(Xi|v,Ai)

S(Xi|v1,Ai)

Pr(v|Ai)

Pr(v1|Ai)
. (27)

Here rr(Xi|v,Ai) and S(Xi|v,Ai) are the relative risks and sur-
vival times conditional on the event (v,Ai). Then (25) is true if

S(u|Vi, Ji,�
aux
i ) = S(u|Vi, Ji,�

aux+
i ), 0 ≤ u ≤ τ, (28)

and

P(Vi|Ji,�
aux
i ) = P(Vi|Ji,�

aux+
i ). (29)

Epidemiologists refer to (28) as �aux
i containing all indepen-

dent predictors of outcome, and (29) as �aux
i containing all in-

dependent predictors of exposure.
The requirements for efficient analysis are conceptually and

mathematically equivalent to those in the design stage. That is,
to estimate geff

i,b, we need only include in the conditioning event
the subset of �aux

i that contains the independent predictors of
outcome and exposure.

5.3 Efficient and Locally Efficient Estimators

Although for any given �aux
i it is impossible to know with

certainty whether (28) or (29) is true, these are the exact consid-
erations required to control confounding. As described in Sec-
tion 2, Ji is frequently defined in the analysis stage to be the
subset of Ai such that (28) and (29) are “approximately” true
when �aux

i is removed from the conditioning events on the left
side. If successful in selecting all of the disease risk factors in Ji

then

S(u|Vi, Ji) = S(u|Vi, Ji,�
aux
i ), 0 ≤ u ≤ τ, (30)

and (27) becomes

Ki,v = rr(Xi|v, Ji)
�i

S(Xi|v, Ji)

S(Xi|v1, Ji)

Pr(v|Ai)

Pr(v1|Ai)
. (31)

The identifiability and efficiency results that we give in this sec-
tion assume that (30) is true.

From (31), it is clear that if we can consistently estimate each
term in Ki,v, we can estimate ĝeff

i,b. For both the nonparametric
and semiparametric models, the second and third terms can be
estimated by S̃(Xi|v, Ji) and P̂(v|Ai), the empirical average of Vi

within levels of Ai. (Here we assume that Ai has finite support;
see Mark 2003, app. D, for the case where the support of Ai is
not finite.) For the semiparametric model, rr(u|Zi) can be esti-
mated by r̃r(u|Zi) = exp(β̃TZi). The S̃(Xi|v, Ji) and β̃ can come
from estimates based on any g2, g∗

3 functions. Hence the semi-
parametric RC-efficient estimators of βo and �o(τ ) exp(βT

o Zi)

are identified. In contrast, the nonparametric model provides
no obvious estimator of rr(u|Zi). If k∗ were small and the
number of cases large, then one could theoretically use kernel
smooths to estimate hazards, and hence relative risks (rr’s). We
do not explore this possibility further. Instead, in Section 7.3
we propose several locally efficient (LE) estimators. LE estima-
tors approximate geff

b by making assumptions about rr(u|Zi).

We denote the resultant approximations by ĝLE
i,b . If the assump-

tions about the rr’s are correct, then ĝLE
i,b is a consistent estimate

of geff
i,b, and the LE estimators are efficient. Regardless of the

truth of the assumptions, the proposed LE estimators are con-
sistent.

6. TWO–STAGE STUDIES CONDUCTED ON THE
LINXIAN COHORT: GOALS, CONSTRAINTS,

AND DATA ANALYSIS

6.1 Two-Stage Studies With Cases Missing by Chance

Since 1986, we have been studying a cohort of approximately
30,000 individuals from Linxian, China, a region with epidemic
rates of GCC cancer (Blot and Li 1985; Blot et al. 1993). The
cohort was assembled to investigate the hypothesis that one or
more of the widely prevalent nutrient deficiencies contributed
to this high GCC incidence. After following the cohort for
5.25 years and recording data on incident GCC and censor-
ing events, we initiated four major studies where the Vi were
measurement(s) of a group of related nutrients (Mark et al.
2000, 2001; Abnet et al. 2003; Taylor et al. 2003). We wanted
to estimate nutrient–GCC associations with as much precision
as possible, so for these studies our design called for sam-
pling all of the 402 incident GCC cases. Despite the fact that
virtually 100% of our cohort consented to giving blood at the
beginning of the study in 1986, we discovered that accidents in
sample processing, storage, shipping, or laboratory evaluation
prevented measurements for approximately 10% of the cancers
(Mark et al. 2000). Because this missingness arises from events
outside of investigators’ control, we refer to such cases as be-
ing missing by chance. Using the standard case-cohort estima-
tors of relative risk, we found that serum levels of selenium
and vitamin E were inversely related to cancer incidence (Mark
et al. 2001; Taylor et al. 2003). The strongest effect was for sele-
nium, where individuals in the highest quartile of selenium had
approximately half the cancer risk of those in the lowest (Mark
et al. 2001). Various strategies for population wide nutrient sup-
plementation to eliminate these deficiencies are currently being
considered by our colleagues at the Cancer Institute of the Chi-
nese Academy of Medical Sciences. Decisions of whether and
how much to supplement depend on estimates of absolute risks.
Using a π̂ -estimating procedure, we estimated that the correc-
tion of both selenium and vitamin E deficiencies could reduce
the GCC incidence by approximately 30%. We are currently
preparing a manuscript describing these results.

Many of the two-stage studies that we have initiated in the
last 4 years have examined the association of GCC with recently
characterized DNA polymorphisms (Stolzenberg-Solomon
et al. 2003; Savage et al. 2004a,b; Roth et al. 2004; Mahabir
et al., in press). Samples suitable for DNA measurements were
not collected until 1991, and then only on a subgroup of the
remaining cohort. Overall, we measured polymorphisms in ap-
proximately 20% of the cases from 1991 to 1996. Thus, in these
studies, 80% of the cases were missing by chance.

6.2 “Exploratory” Two-Stage Studies Where Cases
Are Missing by Design

By the time we designed the serologic studies of nutrients,
numerous other exposures that could be measured in serum had
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become of interest. Because our total serum quantity was quite
limited and the list of exposures of interest was large, we ini-
tiated “exploratory” two-stage studies in which we deliberately
sampled only a fraction of cases (Abnet et al. 2001; Limburg
et al. 2001). Our goal was to sample only the number of cases
and controls required to produce sufficiently precise estimates
of exposure prevalence, assay reliability, and risk magnitude to
determine whether to commit additional resources (Mark and
Katki 2001). In one “preliminary study” where the exposure
was the fungal-produced toxin fumonosin, we found that the
newly developed measurement procedure was not reliable, and
have not initiated a larger study (Abnet et al. 2001). In contrast,
due to the results from the “exploratory” study on the associa-
tion of GCC with serologic evidence of Hp infection (Limburg
et al. 2001), we have begun a much larger two-stage study. In
studies such as these where Vi is deliberately measured on only
a fraction of the cases, we say that the cases are missing by
design.

6.3 Background Information on the Association
of Hp With GCC

Cancers that arise in the proximal 2–3 cm of the stomach are
called GCCs. These differ with regard to population rates, and
some individual-level risk factors, from stomach cancers that
arise outside of the cardia (GNC) (Devesa, Blot, and Fraumeni
1998). In the last decade, epidemiologic cohort studies have
found that individuals with Hp infection are at increased risk for
GNC; relative risks (rr’s) range from 2 to 4 (Helicobacter and
Cancer Collaborative Group 2001). The quantity, consistency,
and biologic plausibility of the evidence is such that Hp is cat-
egorized as a class 1 human carcinogen (International Agency
for Research on Cancer 1994).

Prior to our study, only a few small studies, with case sizes
ranging from 4 to 12, examined the Hp–GCC association.
All were from first-world Western nations. The consensus was
that Hp was “protective” for GCC, with rr ≈ .5 (Helicobacter
and Cancer Collaborative Group 2001; Dawsey, Mark, Taylor,
and Limburg 2002). Various mechanistic hypotheses have been
advanced to account for the opposite association of Hp on GNC
and GCC (Blaser 1999).

6.4 Design and Analysis of the Hp–GCC Study Using
a Cohort From Linxian, China

Based on dissimilarities between the populations,and on dif-
ferences in the prevalence of esophageal adenocarcinomas,
a type of cancer which can be difficult to distinguish from
GCC (Limburg et al. 2001; Dawsey et al. 2002), we hypothe-
sized that the Hp–GCC association in Linxian might differ from
that found in Western populations. In accord with the goals for

“exploratory” studies given earlier, we sampled approximately
25% of the GCC cases (100 cases) and 7% of controls (200 con-
trols) that occurred in the cohort by τ = 5.25 years (Limburg
et al. 2001). We measured serum antibodies and found an Hp
prevalence (Hp+, Vi = 1) of approximately 65% and an rr of
approximately 2 for Hp+ individuals. The only other major in-
dependent risk factor for GCC in this population was age; age
greater than the cohort median age, (Ji = 1) increased GCC risk
by a factor of 3.5.

Table 1 contains estimates of covariate-specific survivals (3),
age-standardized survivals (4), and risk differences (6) based on
the CPH model (1) with Vi and Ji indicator variables. Because
a fixed number of cases (n = 200) and controls (n = 100) were
sampled, we used a π̂ -estimator to estimate both βo and �o(τ ).
In particular, we used logistic model (9), the model saturated
in (�i, Ji). Throughout this article, we denote this estimator
by π̂(�, J). At each age level, the Hp+ group had lower sur-
vival than the Hp− group. Within levels of Hp exposure, sur-
vival was higher in the younger group (J0). We estimated the
age-standardized risk difference to be 1.08%, with a 95% con-
fidence interval whose lower limit just excludes 0.

We contributed the data from our study to a pooled study ex-
amining Hp and gastric cancer risks. The overall conclusion of
that analysis was that there was no evidence of an Hp–GCC as-
sociation (Helicobacter and Cancer Collaborative Group 2001).
We did not share that interpretation. Rather, we argued that
tests for heterogeneity of risk estimates by geographic region
were highly significant (Dawsey et al. 2002), and that pool-
ing the risk estimates from Western populations and Chinese
populations was not appropriate. We have currently initiated a
larger study sampling from the approximately 1,000 GCCs that
accrued through 2001 (τ = 15 years). This is also a study in
which cases are missing by design; however, here the motiva-
tion for the designed missingness is opposite to that described
earlier. Based on the Hp prevalence and risk estimates from the
“exploratory” study, we determined that measurements on all
1,000 GCCs were not needed to achieve the precision required
to eliminate type 1 error as a viable explanation for our earlier
findings. The simulations in Section 7 are based on the structure
of this new study. We used similar simulations to help arrive at
the sampling fractions used in the actual study.

7. SIMULATIONS

7.1 Simulation Parameters and Definition of
Relative Efficiency

For all simulations, the marginal covariate probabilities
were Pr(J1) = .5 and Pr(V1) = .65. Ti was specified by CPH
model (1), λo(u) was exponential, and censoring was indepen-
dent. The magnitudes for the baseline hazard and competing

Table 1. Effect of H. pylori Infection on Age-Specific Survival and Age-Standardized Survival,
at 5.25 Years in the Linxian Cohort

Hp− (V0) Hp+ (V1)

Young (J0) 99.2% (98.9, 99.5) 98.8% (98.4, 99.0)
Old (J1) 97.3% (96.1, 98.1) 95.5% (94.4, 96.3)

Age-standardized survival 98.3% (97.7, 98.9) 97.2% (96.7, 97.8)

Age-standardized risk difference 1.08% (.02, 2.15)

NOTE: The estimates are based on CPH model (1) with relative risks exp(βo1Vi + βo2Ji ).
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Table 2. Relative Efficiencies of the π̂ (∆) and π̂ (∆, J) Semiparametric Estimators of S(τ|v) When
J Is an Auxiliary Covariate

Relative efficiency Relative efficiency
rrV = 2.0 rrV = .5

S(τ|v0) = 90% S(τ|v1) = 81% S(τ|v0) = 90% S(τ|v1) = 95%

P(V1|J1) π̂ (∆) π̂ (∆, J) π̂ (∆) π̂ (∆, J) π̂ (∆) π̂ (∆, J) π̂ (∆) π̂ (∆, J)

.65 82 82 46 46 68 68 62 63

.75 81 79 47 46 67 64 62 61

.85 81 73 47 43 66 58 64 57

.95 80 62 47 40 64 48 65 49

NOTE: Relative efficiency equals 100 times the ratio of the variance of an estimator to the variance of the STP estimator. Marginal covariate
probabilities are P(V1) = .65 and P(J1) = .5.

risks were chosen to produce approximately 1,000 expected
cases in a cohort of size n = 6,600 by time τ . Unless noted
otherwise, exp(βo1) = 2 (rrv = 2). The V–J association was
altered by changing the conditional probabilities, P(V1|J1).
Stage 2 sampling was binomial and depended only on case
status (8). Control sampling was 15%. For the simulations in
Tables 2 and 3, 25% of the cases were sampled, resulting in
a control: case ratio of approximately 3:1. In Figures 1 and 2,
case sampling percentages are indicated along the x-axis.

Each of the results represents the average of 2,000 realiza-
tions. All estimators of survivals and βo were unbiased (the
mean of the estimators was always within .1% of the truth).
The coverage for 95% confidence intervals ranged from 93.4%
to 95.8%. Consequently, rather than present the estimator-
specific averages in the tables, we report only relative efficien-
cies (REs), which we define as the ratio (×100) of the variance
of a given estimator to the variance of the STP estimator. The
smaller the RE, the greater the efficiency. Because our focus is
on survival estimation, we do not report the REs of the estima-
tors of βo.

7.2 STP, RC-Efficient, and π̂ Semiparametric
Estimators of Survival

The data in Table 2 were generated from CPH model (1)
with βo2 = 0; S(τ |v) was estimated by fitting the one-covariate
CPH model, λo(u)exp(βo1Vi). For simulations on the left side
of Table 2, rrv = 2, S(τ |v0) = 90%, and S(τ |v1) = 81%.
For simulations on the right, rrv = .5, S(τ |v0) = 90%, and

Table 3. Relative Efficiency of RC-Efficient, Locally Efficient, and
π̂ -Estimators of Standardized Survivals for Semiparametric

and Nonparametric Models

Relative efficiency

Estimator Ss(τ|v0) = 90.4 Ss(τ|v1) = 82.0

Semiparametric S̃eff 86 41
π̂ (�, J) 87 45

Nonparametric SLE correct 90 42
ILE correct 90 42
SLE prior 108 47
ILE prior 90 42
SLE null 91 43
ILE null 90 42
π̂ (�, J) 90 47

NOTE: Relative efficiency equals 100 times the ratio of the variance of the estimator to
the variance of the STP estimator. Marginal covariate probabilities are P(V = 1) = .65 and
P(J = 1) = .5, with P(V = 1|J = 1) = .85 and P(V = 1|J = 0) = .45.

S(τ |v1) = 95%. In these simulations Ji is an auxiliary vari-
able rather than a risk factor. For example, Ji might be a sur-
rogate for Vi, such as evidence of gastric inflammation found in
a biopsy specimen obtained at the beginning of the study. We
compare π̂ (�) estimators based on logistic model (8) with the
π̂(�, J) estimator based on (9) at five different levels of V–J
association. We first focus on the rrv = 2 simulations.

When Pr(V1|J1) = .65, Vi and Ji are independent. Hence the
π̂ (�) and π̂(�, J) estimators are equally efficient, and are con-
siderably more efficient than the STP estimator. Because the
π̂ (�) estimator makes no use of the auxiliary variable, its RE
is unchanged as Pr(V1|J1) increases. In contrast, the efficiency
of the π̂ (�, J) estimator increases (i.e., RE decreases).

Differences in the efficiencies between two-stage estimators
are determined largely by the extent to which information from
cases with Ri = 0 is used. In the rrv = 2 simulations, the mag-
nitude of the efficiency gains for both π̂ -estimators is greater
in the v1 strata than in the v0 strata. These greater gains re-
flect the fact that there are more cases, and hence more cases

Figure 1. Relative Efficiency of Semiparametric Estimators
of Ss(τ|v1) as Case-Sampling Percentage Varies [ - - - - π̂ (∆, J) estima-
tor; —— S̃eff estimator]. The simulation data were generated using the
same CPH model as in Table 3. Case-sampling percent is the binomial
probability (×100) of V measurement for cases, and is indicated on the
x-axis. For all simulations, control sampling is 15%. Relative efficiency
is defined as 100 times the ratio of the variance of the π̂ (∆, J) and S̃eff

(RC-efficient) estimators, to the variance of the STP estimator. Both
estimators are substantially more efficient than the STP estimator. The
magnitude of the efficiency gains are inversely related to case-sampling
percent. Efficiency differences between the S̃eff and π̂ (∆, J) estimators
show a similar dependency on case-sampling percent.
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Figure 2. Comparing the Effect of Case-Sampling Percent on the
Variance of STP and S̃eff Estimators of Ss(τ|v1). The simulation data
were generated using the same CPH model as in Table 3. Sampling
percent is the binomial sampling probability (×100) of V measurement.
For all simulations, control sampling is 15%. Case-sampling percent is
indicated on the x-axis. The solid line is the ratio of the variance of
the S̃eff estimator at each of four case sampling percents, to the vari-
ance of the STP estimator at 90% case sampling. Except at the lowest
case-sampling percent, 12.5%, the ratio is <1. The dotted line com-
pares the variance of the S̃eff estimator at each case sampling percent,
to the variance of the S̃eff estimator at 90% case sampling. The dashed
line plots the corresponding ratios for the STP estimator. The variances
of both estimators increase as case sampling fractions decrease. The
rate of increase is greater for the STP estimator.

with missing measurement, in the v1 stratum. When rrv = 2,
78% of the missing cases occur in the v1 group. In contrast,
when rrv = .5, 49% of the missing cases occur in the v1 stra-
tum. Here both strata have nearly identical REs. Contrasting the
two sets of simulations in regard to estimation of S(τ |v1), we
find lower REs when rrv = 2. The expected number of missing
cases is 775 for the rrv = 2 simulation and 209 for the rrv = .5.

The comparable nonparametric π̂ -estimators for the Table 2
simulations produced the same patterns and are not shown.
Variances of the nonparametric estimators were 5–10% larger
than their semiparametric counterparts.

The first two rows of Table 3 contain results for the RC-effi-
cient estimator, which we denote by S̃eff, and the π̂(�, J) esti-
mator of standardized survivals for the semiparametric model (1)
with exp(βo1) = 2 and exp(βo2) = 3. As expected, the REs of
both estimators are less than one. The S̃eff estimator, which
conditions on all of Wi when estimating E[DFb

i |Wi], is more
efficient than the π̂ (�, J) estimator which conditions only
on (�i, Ji). Figure 1 presents the relative efficiencies of the S̃eff

and π̂(�, J) estimators of Ss(τ |v1) at four different case sam-
pling probabilities: 12.5%, 25%, 50%, and 90%. The positive
slopes of both lines indicate that the efficiency gains decrease
as the sampling fraction increases. At 12.5% case sampling,
the RE of the S̃eff estimator is 35%; at 90% case sampling, the
RE is 59%. Similarly, differences in efficiency between the S̃eff

(solid line) and π̂ (�, J) (dotted line) estimators diminish with
increasing case sampling percentage. Both of these findings
are in accordance with the previous observation that efficiency
gains depend on the number of missing cases. The same expla-
nation accounts for the greater efficiency gains for estimators

of Ss(τ |v1) compared with estimators of Ss(τ |v0) in Table 3;
85% of the expected 1,023 cases have Vi = 1.

In Figure 2 the solid line is a plot of the ratio of the vari-
ance of the S̃eff estimator of Ss(τ |v1) at each of the four case
sampling probabilities to the variance of the STP estimator at
90% sampling. The RC-efficient estimator has a lower variance
when 25% of the cases are sampled than the STP estimator has
when 90% of the cases are sampled. The dotted line compares
the variance of S̃eff at each case sampling percent to the variance
of S̃eff at 90%. The dashed line plots the corresponding ratios
for the STP estimator. Although clearly the variances increase
as case sampling decreases for both estimators, the rate of in-
crease is greater for the STP estimator. An STP estimator loses
all the information from each missing case; the S̃eff estimator
retains the information contained in E[DF3

i |Wi].
7.3 STP, π̂ (�, J), and Locally Efficient Nonparametric

Estimators of Survival

The last seven rows of Table 3 contain efficiency results for
seven nonparametric estimators of survival. There are three sim-
ple local efficient estimators (SLEs), three insured local effi-
cient estimators (ILEs), and the π̂(�, J) estimator. Each of the
corresponding SLEs and ILEs uses identical estimates, ĝLE

1 ,
of g1. The distinction is that the SLE estimates are produced by
setting gi,1 = ĝLE

i,1 in (16) [or (A.3.1)], whereas the ILE estima-
tors are π̂ -estimators based on prediction model (23) with geff

i,1
replaced by ĝLE

i,1 . By construction, ILE estimators must be at
least as efficient as π̂ (�, J) estimators, even when ĝLE

i,1 is based
on a misspecified rr(Xi|v) (Mark 2003). SLEs do not share this
property. For example, for the SLE-correct and ILE-correct es-
timators, the exposure odds (26) are estimated by replacing
the relative risks in (31) by estimates from a correctly speci-
fied model of the relative risks. Specifically, we assumed ex-
ponential hazards within each Vi level, estimated the hazards
by dividing the number of observed cases by total person-time,
and estimated rr(Xi|v1) as a ratio of the hazards. Both the
SLE- and ILE-correct estimators attain the nonparametric ef-
ficiency bound. In contrast, for the SLE- and ILE-prior and
null survival estimators the estimates of rr(Xi|v) in (31) are
based on misspecified models for the relative risks. The SLE-
and ILE-prior estimators set rr(Xi|v1) = .5. This is the pooled
estimate of relative risk from the prior studies (Sec. 6.3). The
SLE- and ILE-null estimators set rr(Xi|v1) = 1. These are the
efficient estimators under the null hypothesis. Table 3 shows
that for estimators of Ss(τ |v0), not only is the SLE-prior esti-
mator less efficient than the π̂ (�, J) estimator, it is also 8% less
efficient than the STP estimator. In contrast, the ILE-prior and
ILE-null estimators are as efficient (to two significant digits) as
the ILE-correct estimator.

8. DISCUSSION

Two-stage studies are commonly used in epidemiology as a
resource-effective means of estimating the association of dis-
ease with exposures whose measurements consume a substrate
that is limited in quantity. When estimating survival, the pro-
cedures proposed by the case-cohort and nested case-control
designs are biased if cases are missing exposure measurements.
In this article, referring to our Linxian studies as examples, we
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have described how case missingness arises regardless of inves-
tigator intent and explained why designs that deliberately sam-
ple a fraction of cases are frequently desirable. Applying results
of RRZ, we have derived a class of nonparametric estimators
and a class of semiparametric estimators that provide unbiased
estimates of cumulative hazards and survivals when cases are
missing covariate data (Mark 2003). We used a semiparametric
estimator to analyze data from a study in which only 25% of
cases were sampled, and found significant differences in age-
standardized survivals between subjects with and without sero-
logic evidence of H. pylori infection.

Through simulations, we have demonstrated that the varia-
tion in efficiency between estimators within a class is of prac-
tical consequence. Efficient estimators make better use of the
data observed in stage one to provide information on the expo-
sures not observed in stage two. We express the optimal es-
timators in terms of the familiar quantities of relative risks,
survivals, and exposure prevalence, and provide practical strate-
gies for using this formulation to construct estimators with de-
sirable properties. In the design stage, efficiency considerations
require collecting information on all covariates suspected of be-
ing independent predictors of either exposure or disease. For the
analysis stage, we provide a robust procedure (π̂ -estimation)
that incorporates these independent predictors into estimation.
R code for implementing these procedures for two-stage studies
is available on request.

Given the ease of implementation and the considerable ef-
ficiency advantages that even the simplest π̂ -estimators have
compared with the Horvitz–Thompson (STP) estimator, we rec-
ommend that the latter never be used for estimating survival
from two-stage designs.

APPENDIX A: ESTIMATING EQUATIONS, INFLUENCE
FUNCTIONS, AND VARIANCE ESTIMATORS

Here we explicitly define random variables for a univariate count-
ing process such as is appropriate for the semiparametric estimators
with CPH model (1). For nonparametric estimators, or semiparamet-
ric estimators with a stratified CPH model, the processes should be
interpreted in terms of the standard multivariate extension (Andersen
et al. 1993; Mark 2003). For instance, in nonparametric estimation
�̃(τ , g1) is the k∗ ×1 estimator with row entries �(τ,g1; z) and Ni(u)

is k∗ × 1, with the kth row defined as Nik(u) = 1 iff I(Zi = k), Ti ≤ u,
and Ti ≤ Ci. When we can do so without confusion, and to indicate
that any consistent estimator of a parameter will suffice, we drop the
argument gb from two-stage estimators and influence functions; for
example, we write �̃(τ ) for �̃(τ , g1). To estimate cumulative hazards
and survivals at some time t �= τ , substitute t for τ in the upper limit
of the integrals that define the cumulative hazard estimators.

A.1 Definitions of Counting Process Notation

Ni(u) = 1 iff Ti ≤ u, and Ti ≤ Ci;
Yi(u) = 1, iff (Ci ∧ Ti) ≤ u.

dMi(u) = dNi(u) − d�i(u); d�i(u) = Yi(u)λ(u|Zi).

S0(u) =
n∑

j=1

RiYi(u); S0(u, β) =
n∑

i=1

Yi(u) exp(β̂ T Zi).

dM̃i(u) = dNi(u) − Yi(u)d�̃(u);

dM̃i(u, β) = dNi(u) − Yi(u)d�̃o(u, β̃) exp(β̃T Zi).

S̃0(u) =
n∑

j=1

π−1
i,o RiYi(u);

S̃0(u, β) =
n∑

i=1

π−1
i,o RiYi(u) exp(β̃T Zi);

S̃1(u, β) =
n∑

i=1

Yi(u)Zi exp(β̃T Zi);

Ẽ(u, β) = S̃1(u, β)S̃0(u, β)−1.

ĩ = n−1
n∑

i=1

π−1
i,o Ri�i

(
Zi − Ẽ(Xi, β)

)(
Zi − Ẽ(Xi, β)

)T ;

n−1S̃ j(u, ·) lim p−→ s j(u, ·) for j ∈ {0,1};

Ẽ(u, β)
lim p−→ e(u, βo) = s1(u, βo)s0(u, βo)−1;

ĩ
lim p−→ i = E

[(∫ τ

0
{Zi − e(u, βo)}dMi(u)

)

×
(∫ τ

0
{Zi − e(u, βo)}dMi(u)

)T]
.

Here
lim p−→ means limit in probability. (For more details, see Andersen

et al. 1993; for weighted processes, see Pugh 1993.)

A.2 DFb
i : The Full-Data Influence Functions

(Andersen et al. 1993)

DF1
i =

∫ τ

0
[s0(u)]−1 dMi(u);

DF2
i = i−1

∫ τ

0
{Zi − e(u, βo)}dMi(u);

DF3
i =

∫ τ

0
[s0(u, βo)]−1 dMi(u) − DF2T

i

∫ τ

0
e(u, βo)d�o(u, βo).

A.3 Two-Stage Estimators of �(τ ), βo, �o(τ )

�̃(τ,g1) =
n∑

i=1

{
π−1

i,o Ri

∫ τ

0

(
S̃0(u)

)−1 dNi(u)

− π−1
i,o (Ri − πi,o)g1(Wi)

}
. (A.3.1)

β̃(g2) is the β that solves

n∑
i=1

{∫ τ

0
π−1

i,o Ri
(
Zi − Ẽ(u, β)

)
dNi(u)

− π−1
i,o (Ri − πi,o)g2 (Wi)

}
= 0. (A.3.2)

To estimate �̃o(τ, β̃(g2), g∗
3), first estimate β̃(g2) in (A.3.2); then

�̃o
(
τ, β̃(g2),g∗

3
) =

n∑
i=1

{∫ τ

0
π−1

i,o Ri
[
S̃0(

u, β̃(g2)
)]−1 dNi(u)

− π−1
i,o (Ri − πi,o)g∗

3(Wi)

}
. (A.3.3)
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A.4 Deriving the Influence Function for �̃o(τ , β̃(g2), g∗
3)

To show that when b = 3, (18) is the influence function for
�̃o(τ, β̃(g2),g∗

3), we write

�̃o
(
τ, β̃(g2),g∗

3
) − �o(τ,βo)

= {
�̃o

(
τ, β̃(g2),g∗

3
) − �̃o(τ,βo,g∗

3)
}

+ {
�̃o(τ,βo,g∗

3) − �o(τ,βo)
}
.

Using a Taylor series expansion of β̃(g2) around βo as in theo-
rem VII 2.3 Andersen et al. (1993), the first term on the right side is
(β̃(g2) − βo)T ∫ τ

0 e(u, βo)λo(u)du + op(1). Multiplying by n1/2 and
replacing estimators with their influence functions gives

D3
i (g3) = π−1

i,o RiD
F3
i − π−1

i,o (Ri − πi,o)g3(Wi);
(A.4.1)

gi,3 = g∗
i,3 − gi,2

∫ τ

0
e(u, βo)d�o(u, βo).

A.5 Estimating Db
i (gb) (18) and Db

i (π̂ (W l )) (21)

Estimators D̃b
i (gb) of Db

i (gb) are formed by replacing the s j(u, ·),
dMi(u, ·), and e(u, β) in the DFb

i with their estimators in Section A.1.
The weights πi,o can be replaced by any consistent estimate, π̂ . For
π̂ -estimation, estimators D̃1

i (π̂(Wl)) and D̃2
i (π̂(Wl)) are the residuals

from an ordinary least squares regression of D̃b
i (πo) on the scores S̃l

i .
For b = 3, the influence function (21) is correct for π̂ -estimator where
g2 = 0. For π̂ -estimators with any β̃(g2) used in (A.3.3), the influence
function is

D3
i
(
g2, π̂(Wl)

)

≡ D3
i (g2,g∗

3 = 0) − E
[
D3

i (g2,g∗
3 = 0)SlT

i
]
E[Sl

iS
lT
i ]−1Sl

i. (A.5)

Equation (A.5) is derived by sequential application of RRZ’s propo-
sition 6.2 (Mark 2003). (A.5) is estimated by least squares regression
residuals as described earlier. In the particular instance in which the
estimates of βo come from π̂ -estimation, gi,2(π) = πi,oP2lWl

i (Mark
2003).

A.6 Estimating the Asymptotic Variance of �̃(τ )
and {β̃T , �o(τ )}T

Let D̃a
i = {(D̃2

i )T , D̃3
i }T , and let V1 and Va be the variances of �̃(τ )

and {β̃T , �̃o(τ, β̃)}T . Consistent estimates of the asymptotic variance
are Ṽ1 = n−1 ∑

D̃1
i D̃1T

i and Ṽa = n−1 ∑
D̃a

i D̃aT
i .

A.7 Estimating the Asymptotic Variances of
S̃(τ |z ), S̃s(τ |v), and R̃d(τ )

Let S̃(τ ) and S̃(τ,β) be the k∗ × 1 vector of nonparametric
and semiparametric estimates of S(τ ), with row h entry S̃(τ |h) and
S̃(τ |h, β); here h is a point in the support of Zi. Let Vs1 and Vs2 be
the corresponding k∗ × k∗ variance matrices for S̃(τ ) and S̃(τ,β).
Define G as the k∗ × k∗ diagonal matrix with S̃(h) in the hth row,
hth column. Then Ṽs1 = GṼ1G1 is a consistent estimate of Vs1.
Each h can be represented as a unique p × 1 covariate vector, zh.
Let Lh = S̃(τ |h, β) exp(β̃T zh) × {1, �̃o(τ,β) × zh}. Let L be the
k∗ × (p + 1) matrix with hth row LT

h . Then Ṽs2 = LṼaLT is a con-
sistent estimator of Vs2.

Let v∗ and j∗ be the number of levels in the support of Vi and Ji
respectively. Let S̃(τ, ·) be either the nonparametric or semiparametric
estimator of S(τ ). Arrange S̃(τ, ·) in v∗ groups of length j∗, in order
of increasing index. Let WT

j be the 1 × j∗ matrix of weights wj, let

Iv∗ the v∗ × v∗ identity matrix, and let Cw = WT
j ⊗ Iv∗ , where ⊗ de-

notes the Kronecker product. Then S̃s(τ |v) = CwS̃(τ, ·), with variance
estimated by, for instance, CwṼs1CT

w. Estimates of standardized risk
differences, R̃d(τ ), are simple contrasts of the S̃s(τ |v). (For estimators
of population attributable risk and their distribution, see Mark 2003,
app. A.)

APPENDIX B: π̂ -ESTIMATORS FOR CASE–COHORT
AND NESTED CASE–CONTROL DESIGNS

In this section we provide π̂ -estimators when sampling follows that
defined by either the CCH or NCC designs. For simplicity, we assume
that sampling does not depend on Ai. Although both designs specify
that Vi be observed on all cases, the π̂ -estimators that we give require
no such restriction. We assume only that cases are sampled with some
known (dependent or independent probability). (For detailed descrip-
tions of sampling procedures, see, e.g., Self and Prentice 1988; Borgan
et al. 1995.)

In the CCH, the “comparison” group is a binomial random sample
drawn from all cohort members. Because both the case and the con-
trol sampling probabilities are dependent only on �i, any π̂ -estimators
with column space greater than (8) can be used.

NCC designs use dependent, risk set sampling. Let {T(1), . . . ,T(d)}
be the set of ordered case failure times. We can estimate the case sam-
pling probability, πi,o(�1), by the proportion of cases sampled. For
subjects with �i = 0, we define indicator variables, Rik = 1, if the sub-
ject is selected at T(k) and Rik = 1 if Rih = 1, for some h ≤ k; Ri0 ≡ 0.
Let πi,k ≡ Pr(Rik = 1|Xi,�i = 0,Rik−1 = 0); then

Pr(Ri = 1|�i = 0,Xi) ≡ πi,o(�0)

=
d∑

k=1

πikI
(
Xi ≥ T(k),Rik−1 = 0

) k−1∏
j=1

(1 − πij), (B.1)

where the product term is defined to be 1 when k = 1. To esti-
mate πi,o(�0), we replace the πik in (B.1) with the proportion of
controls with (Xi ≥ T(k),Rik−1 = 0) who were sampled at T(k).
Though (21) remains the correct expression for the influence function,
the scores are from a likelihood based on (B.1).

[Received November 2003. Revised June 2005.]
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